A microscope is an instrument used to see objects that are too small for the naked eye. The science of investigating small objects using such an instrument is called microscopy. Microscopic means invisible to the eye unless aided by a microscope.
There are many types of microscopes. The most common (and the first to be invented) is the optical microscope, which uses light to image the sample. Other major types of microscopes are the electron microscope (both the transmission electron microscope and the scanning electron microscope), the ultramicroscope, and the various types of scanning probe microscope.
There are many types of microscopes. The most common (and the first to be invented) is the optical microscope, which uses light to image the sample. Other major types of microscopes are the electron microscope (both the transmission electron microscope and the scanning electron microscope), the ultramicroscope, and the various types of scanning probe microscope.
The first microscope to be developed was the optical microscope, although the original inventor is not easy to identify. Evidence points to the first compound microscope appearing in the Netherlands by the 1620s, with a likely inventor being Cornelis Drebbel. Counter claims include it being invented by Hans Lippershey (who obtained the first telescope patent) and what may be a dubious claim by Zacharias Janssen's son that his father invented the microscope and telescope. Giovanni Faber coined the name microscope for Galileo Galilei's compound microscope in 1625 (Galileo had called it the "occhiolino" or "little eye").
It was not until the 1660s and 1670s that the microscope was used extensively for research in Italy, the Netherlands and England. Marcelo Malpighi in Italy began the analysis of biological structures beginning with the lungs. Robert Hooke's Micrographia had a huge impact, largely because of its impressive illustrations. The greatest contribution came from Antonie van Leeuwenhoek who achieved up to 300 times magnification. He sandwiched a v. small glass ball lens between the holes in two metal plates riveted together and with an adjustable by screws needle attached to mount the specimen. Then, Van Leeuwenhoek discovered red blood cells and spermatozoa and helped popularise microscopy as a technique. On 9 October 1676, he reported the discovery of micro-organisms.
In the early 20th century a significant alternative to light microscopy was developed, using electrons rather than light to generate the image. Ernst Ruska started development of the first electron microscope in 1931 which was the transmission electron microscope (TEM). The transmission electron microscope works on the same principle as an optical microscope but uses electrons in the place of light and electromagnets in the place of glass lenses. Use of electrons instead of light allows a much higher resolution.
It was not until the 1660s and 1670s that the microscope was used extensively for research in Italy, the Netherlands and England. Marcelo Malpighi in Italy began the analysis of biological structures beginning with the lungs. Robert Hooke's Micrographia had a huge impact, largely because of its impressive illustrations. The greatest contribution came from Antonie van Leeuwenhoek who achieved up to 300 times magnification. He sandwiched a v. small glass ball lens between the holes in two metal plates riveted together and with an adjustable by screws needle attached to mount the specimen. Then, Van Leeuwenhoek discovered red blood cells and spermatozoa and helped popularise microscopy as a technique. On 9 October 1676, he reported the discovery of micro-organisms.
In the early 20th century a significant alternative to light microscopy was developed, using electrons rather than light to generate the image. Ernst Ruska started development of the first electron microscope in 1931 which was the transmission electron microscope (TEM). The transmission electron microscope works on the same principle as an optical microscope but uses electrons in the place of light and electromagnets in the place of glass lenses. Use of electrons instead of light allows a much higher resolution.